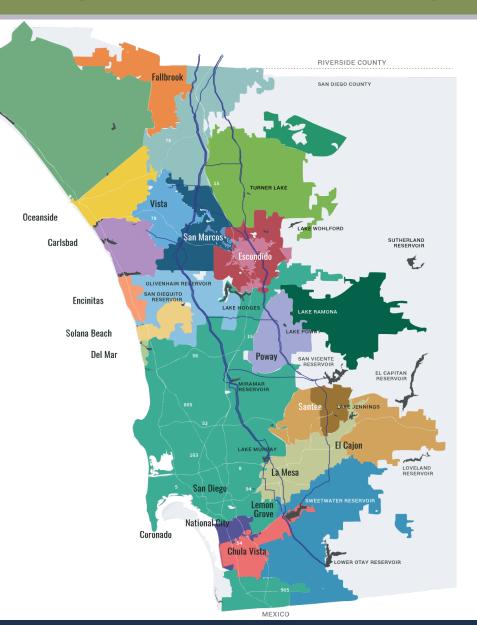


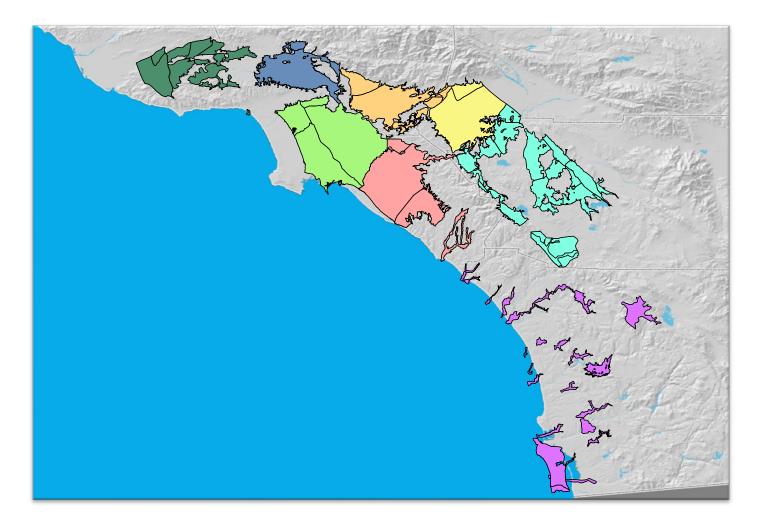
LET'S GET STARTED

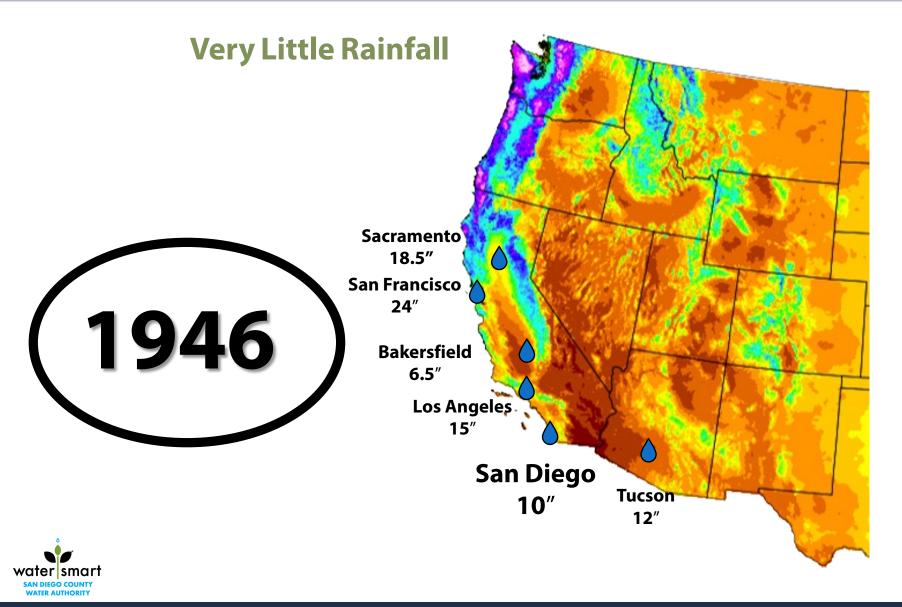

"Making The Revenant was about man's relationship to the natural world. Our production needed to move to the southern tip of this planet just to be able to find snow. Climate change is real, it is happening right now. We need to support leaders around the world...

Let us not take this planet for granted."

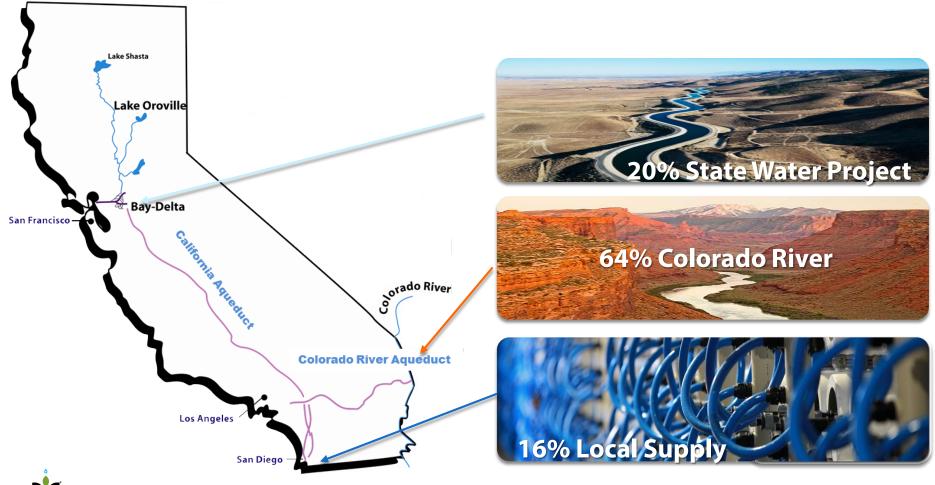
San Diego County Water Authority

E COUNT

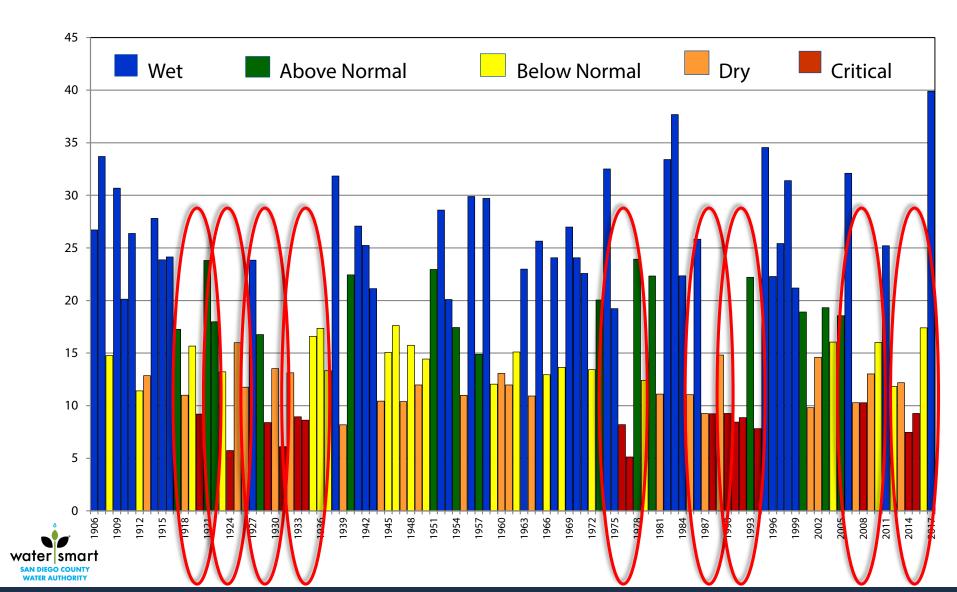

- Wholesale water agency created by the State Legislature in 1944
- Serve 3.3 million people -- 97% of county's population -through 24 member agencies and 310 miles of pipeline
- \$220 billion economy
- Builds, owns, operates and maintains regional water infrastructure
- Provide about 75% of the water used across the


San Diego Has Few Natural Water Assets

Very Little Groundwater



San Diego Has Few Natural Water Assets


San Diego County's Water Sources

We're at the End of Very Long Pipelines

Droughts are Common in California

Supply Diversification

 Carlsbad Desal Plant

San Diego County 1990 vs 2018

Grass Requires 40" of Water a Year

Imported Water Each Year

San Diego Averages 10" of Rain a Year

Joni German

Water Resources Specialist San Diego County Water Authority (858) 522-6705 jgerman@sdcwa.org

Let's Get Started!

Housekeeping

Housekeeping:

Breaks: mid-class, after lab Restrooms (please respect closed-off areas) Please silence your cell phones If you can't attend, contact us!

WaterSmart Series Contacts:

Michelle Landis, Project Manager Leticia Perez Isaac, Project Coordinator Rania Theodosi, Project Coordinator Studio West Landscape Architecture + Planning Email: landscapemakeover@sdcwa.org

Introductions

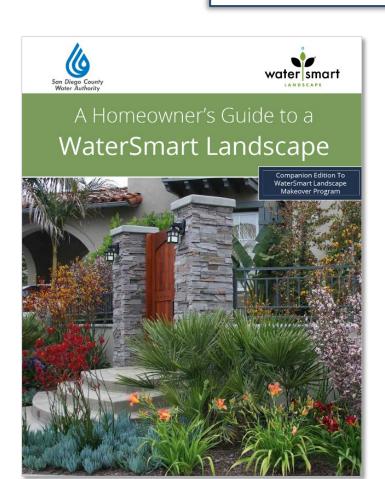
Please introduce yourself...

- Name
- Geographic area
- Personal Goals

Thank you!

Personal Goals

How many of you are here to ...


- Reduce your water use?
- Learn which plants to use?
- Get curb appeal?
- Get a planting plan?
- Learn how to retrofit irrigation?
- Reduce maintenance?

Course Goals

Learn the knowledge and skills necessary to convert a high-water-use turf area into a beautiful, WaterSmart landscape, including how to:

- 1. Identify Your Landscape Target
- 2. Create a Basic Plot Plan
- 3. Evaluate Your Site
- 4. Design Your WaterSmart Landscape
- 5. Implement Your Plan
- 6. Care for Your WaterSmart Landscape

Class 1 Let's Get Started Watersheds, Base Plan, Scale, Soil, Stormwater & Site Evaluation

Class 3 <u>Make it Happen</u> Irrigation Design, Turf Removal, Implementation & Maintenance

Class 2 Shaping Spaces Landscape Design Fundamentals, Plant Selection & Functional Design

Class 4 <u>Design Coaching</u> LID, Planting and Irrigation Plans & Evaluations

Let's Get Started

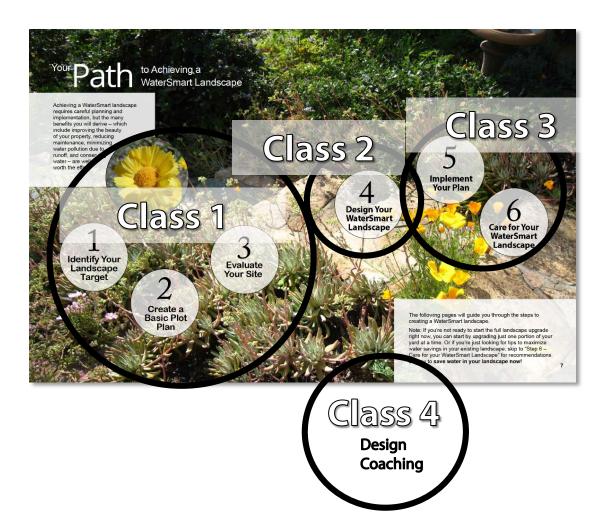
Learning Objectives

Water and San Diego County

Reasons to be WaterSmart

Course Orientation

Goals Materials


Why Remove Turf?

Water Requirements Rainfall in SD Sample Projects

Steps to WaterSmart

Identify Your Target
 Create a Plot Plan
 Evaluate Your Site

 Watersheds
 First Flush
 Soil
 Managing On-Site Water
 Techniques

CLASS

Course Materials

• Notebook

- Presentations
- Homework and work sheets at end of each Class section
- Support Materials: Reference material and some larger slides
- Final Survey

A Homeowner's Guide to a WaterSmart Landscape

- Details of entire process
- Reinforces class material
- WaterSmart Plant Palettes

• Base Plans

- Class 1: L-1 Property with Details
 L-2 for Low Impact Development
- Class 2: L-3 Planting Plan with fewer details
- Class 3: L-4 Irrigation Plan
- Class 4: Bring them ALL

Available On-line Resources

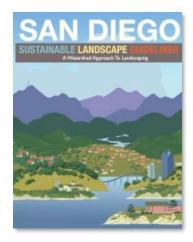
https://landscapemakeover.watersmartsd.org/

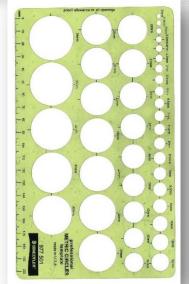
- Videos On Demand
- Sustainable Landscape Guidelines (SLP)

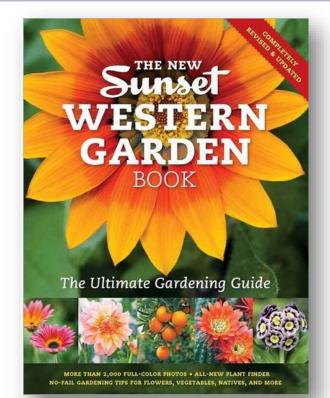
SLP Bonus Reading: pages 1-45

Homework:

Read thru


Step 4


A Homeowner's Guide to a WaterSmart Landscape

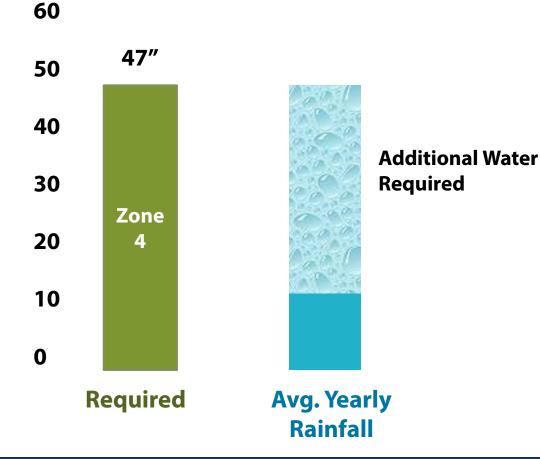


Scale

Reference: Sunset Western Garden Book

Circle Template

Monthly Average Reference Evapotranspiration by ETo Zone (inches/month)


Zone	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
1	0.93	1.40	2.48	3.30	4.03	4.50	4.65	4.03	3.30	2.48	1.20	0.62	32.9
4	1.86	2.24	3.41	4.50	5.27	5.70	5.89	5.58	4.50	3.41	2.40	1.86	46.6
6	1.86	2.24	3.41	4.80	5.58	6.30	6.51	6.20	4.80	3.72	2.40	1.86	49.7
9	2.17	2.80	4.03	5.10	5.89	6.60	7.44	6.82	5.70	4.03	2.70	1.86	55.1
16	1.55	2.52	4.03	5.70	7.75	8.70	9.30	8.37	6.30	4.34	2.40	1.55	62.5
18	2.48	3.36	5.27	6.90	8.68	9.60	9.61	8.68	6.90	4.96	3.00	2.17	71.6

Map zones determined by analysis of United States Department of Agriculture (USDA) 2012 'Plant Hardiness Zone Map', California Irrigation Management Information System (CIMIS) 'Reference Evapotransporation Zone Map' (2012) and Sunset Western Garden Book 'The West's Climate Zones' data (2012). Geographic Information Systems (GIS) data layers of terrain and roadways were also used in creation of this zone map illustration

Regional Perspective

Turf's Water Needs vs. Annual Rainfall

Regional Perspective:

Turf's Water Needs vs. Annual Rainfall

Regional Perspective

- Easy water savings!
- Landscapes can easily be retrofitted for water efficiency.
- Some skills and technical knowledge are necessary.
- Our goal is to educate <u>you</u> to succeed!

Before Installation

After Installation

6 months after installation

One year after installation

Two years after installation

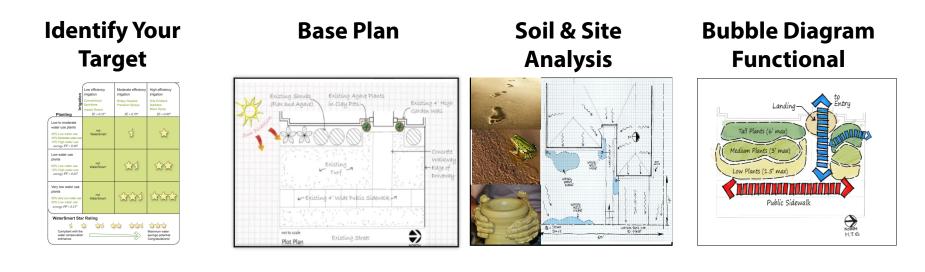
Case Study

Close Up Details

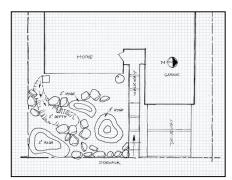
WaterSmart Landscapes

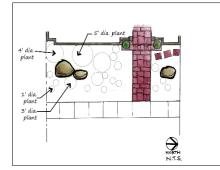
Before

After

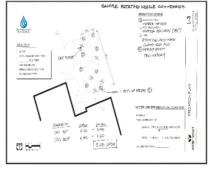


WaterSmart Landscapes

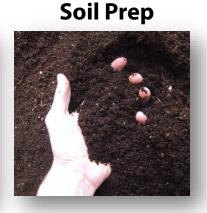

Steps to WaterSmart Landscape Design Process Overview



LID Plan


Hardscape & Preliminary Finished Planting Planting Plan Plan

Irrigation Plan


Steps to WaterSmart Landscape Implementation Overview

Demolition

Contouring

Irrigation

Plant Placement

Installed

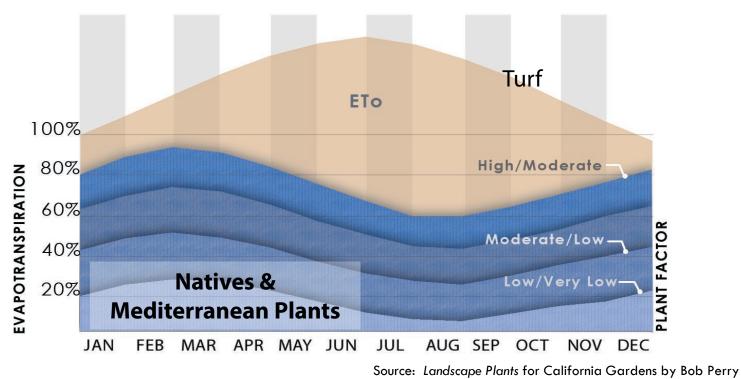
Maintained

Two Years Later

If you don't know where you're going, anywhere will do.

Landscape Target Factors:

- Turf Area
- Plant Selection
- Irrigation Efficiency


STEP ONE **IDENTIFY YOUR LANDSCAPE TARGET**

WaterSmart Matrix Low efficiency High efficiency Moderate efficiency irrigation irrigation irrigation Irrigation Conventional **Rotary Nozzles Drip Emitters** Sprinklers Precision Sprays Bubblers Micro Spray Impact Rotors Planting $IE = 0.55^*$ $IE = 0.70^{*}$ $IE = 0.80^{*}$ Low to moderate water use plants not 45% Low water use WaterSmart 45% Moderate water use 10% High water use average $PF = 0.40^*$ **Plant Selection** Low water use plants not 90% Low water use WaterSmart 10% High water use average $PF = 0.26^*$ Very low water use plants not 50% Very Low water use WaterSmart 50% Low water use average PF = 0.15* WaterSmart Star Rating 5 Compliant with the Maximum water water conservation savings potential. ordinance. Congratulations!

Irrigation Efficiency

Plant Selection

PLANT FACTOR- represents the estimated percent or portion of supplemental water needed relative to the **Eto** value of particular location

STEP ONE **IDENTIFY YOUR LANDSCAPE TARGET**

Irrigation Efficiency

Low (High Precipitation)

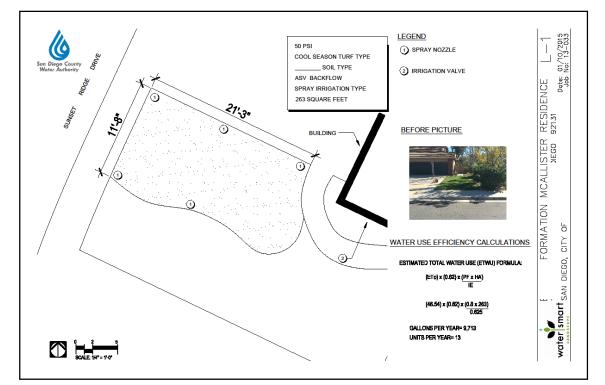
Conventional Overhead Spray Heads

Medium (Low Precipitation)

Rotating Stream Nozzles Large Rotors

High Pressure Compensating Drip Irrigation Bubblers

WaterSmart Star Rating



-cmart Landscape Guide (H1) [rebruary 2011 eliminate anything less than one star

STEP TWO CREATE A BASIC PLOT PLAN

Basic Plot Plan L-1 provided for you

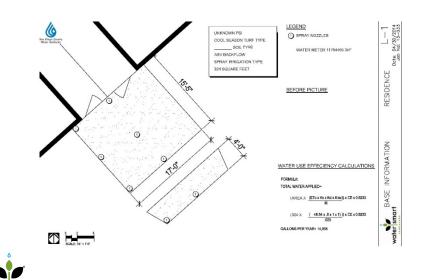
- Bird's Eye View
- Drawn to scale
- Locates house and permanent features
- North Arrow
- Irrigation system info
- Dynamic PSI
- Turf Cool / Warm Season
- ETWU (Estimated Total Water Use) for turf

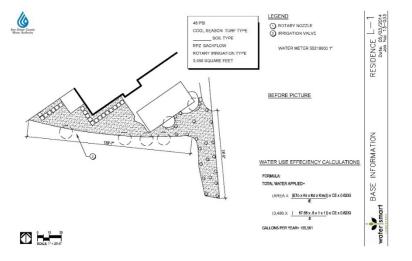
STEP TWO CREATE A BASIC PLOT PLAN

Scale

Water Smarl

Architectural


Standard Size Properties


1/4 Scale: 1/4" = 1' or 1" = 4' 1/8 Scale: 1/8" = 1' or 1" = 8'

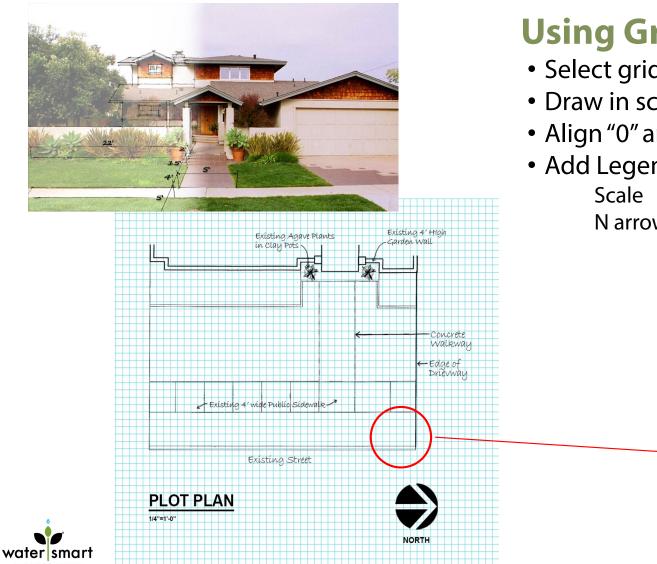
Engineering

Large Size Properties

1/10 Scale: 1" = 10' 1/20 Scale: 1" = 20'

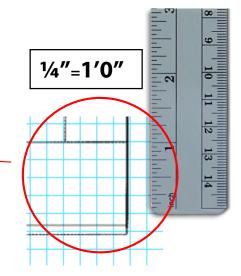
Measure your property

- Start with one dominant point to measure from (i.e. a wall corner)
- Locate features that stay (walls, hardscape, trees, fences, etc.)
- Alternate: use outside source (property description, Google Earth)



STEP TWO

WATER AUTHORITY

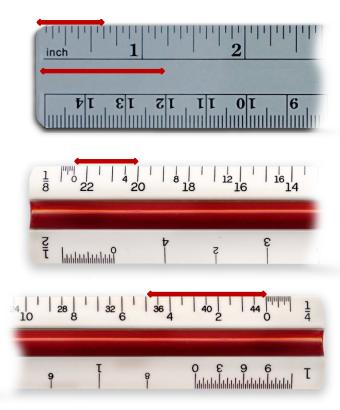

CREATE A BASIC PLOT PLAN

Using Graph Paper

- Select grid paper to match scale
- Draw in scale on grid paper
- Align "0" and measure
- Add Legend:

N arrow

Measuring in Scale

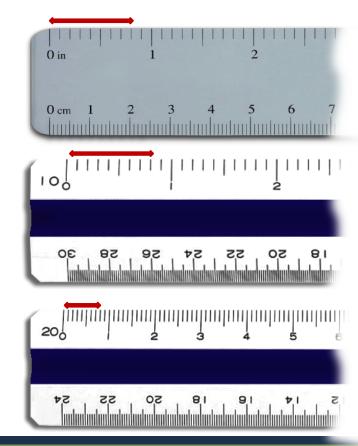

Architectural Scale: 1/8" or 1/4" Scale For example...measuring 5' in scale

Standard Inch Ruler of 1/8" = 1'0" Scale

Standard Inch Ruler of 1/4" = 1'0" Scale

Architectural Scale of 1/8" = 1'0" Scale

Architectural Scale of 1/4'' = 1'0'' Scale


Measuring in Scale

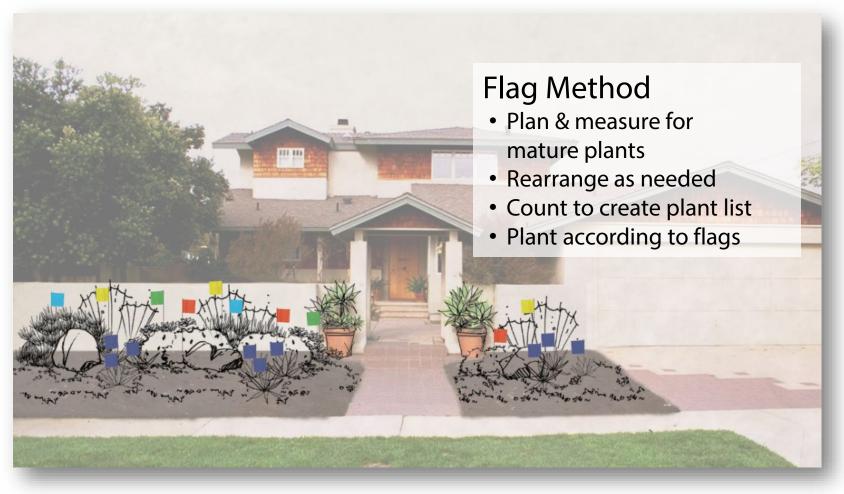
Engineering Scale: 1/10" or 1/20" Scale For example...measuring 8' in scale

Decimal Ruler 1/10" = 1'0"

Engineering Scale 1/10" = 1'0"

Engineering Scale 1/20" = 1'0"

STEP TWO CREATE A BASIC PLOT PLAN

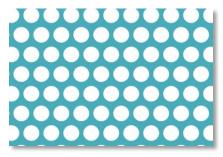

Without putting it on paper

STEP TWO CREATE A BASIC PLOT PLAN

Without putting it on paper

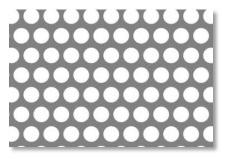
Soil: Why Do We Care?

- Soil can cleanse water
- Soil can store water
- Soil influences everything related to water
 - Infiltration
 - Holding capacity
 - Movement
 - Irrigation scheduling


• Mineral

• Organic

• Pore Space


Mineral

• Organic

Pore Space

Soil Texture

STEP THREE

Particle Type		Water Movement (Drainage)	Water Holding	Nutrient Holding
Sand		Fast	No	No
	2			
Silt		Medium	Medium	Medium
١				
Clay	2	Slow	Yes,	Rich!
ē			once wet	

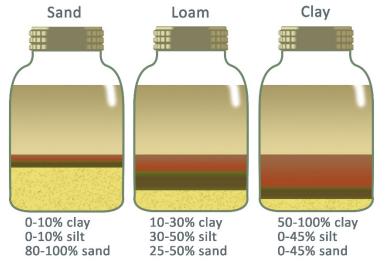
Loam Mixture of all particle types

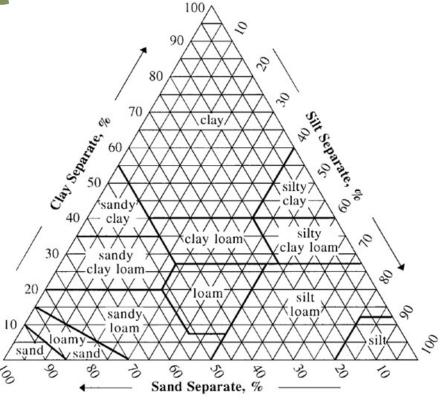
Medium Yes

Yes

Determining Soil Texture

Soil Sampling: Dig a hole

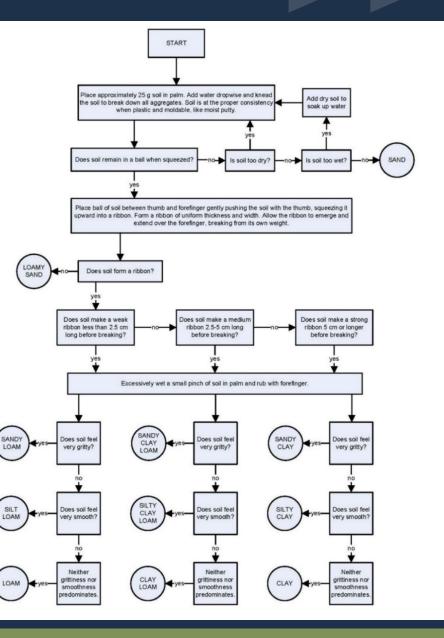

- Remove mulch or surface matter
- Dig 12"x 12" x 12" hole
- Take sample from side of hole, at least 6" down



Determining Soil Texture

Jar Testing for Soil Texture

USDA Soil Texture Pyramid


STEP THREE **EVALUATE YOUR SITE**

Determining Soil Texture

Want more? Find the "Thien Feel Test" online.

Taken from USDA-NCRS (Modified from S.J. Thien. 1979. *A flow diagram for teaching texture by feel analysis*. Journal of Agronomic Education. 8:54-55.)

STEP THREE **EVALUATE YOUR SITE**

Determining Soil Texture

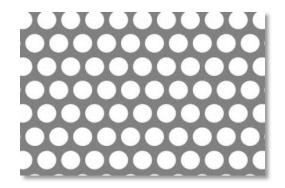
Thien Feel Test

- 1. Wet the soil sample to playdough consistency. Make a ball and poke it.
 - Does it fall apart?
 - Does it hold together?
- 2. Squeeze the ball into a ribbon of soil. How big is it?
 - Less than 1 inch?
 - Between 1 inch and 2 inches?
 - More than 2 inches?
- 3. Wet it excessively and feel it.
 - Is it slippery?
 - Is it gritty?

Back in 15 minutes!

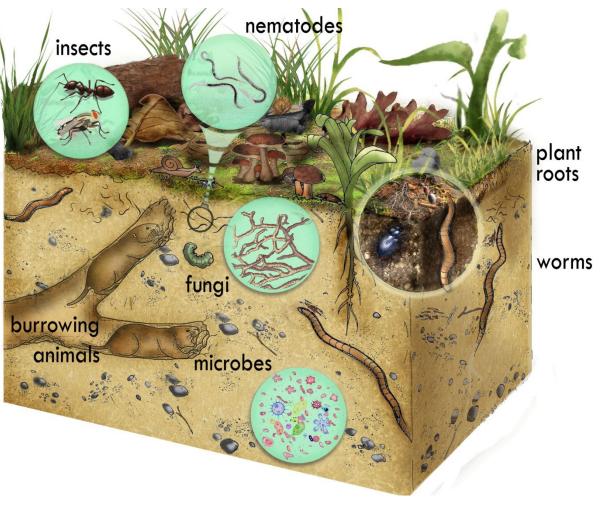
Lab Time Break

STEP THREE **EVALUATE YOUR SITE**


• Mineral

• Organic

Pore Space



Sustainable Soil

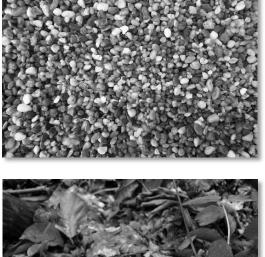
• Soil Food Web

STEP THREE

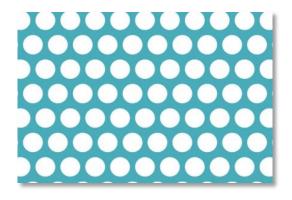
- Organisms build soil
- Encourage them with proper organic matter, moisture, oxygen, etc.

STEP THREE

EVALUATE YOUR SITE

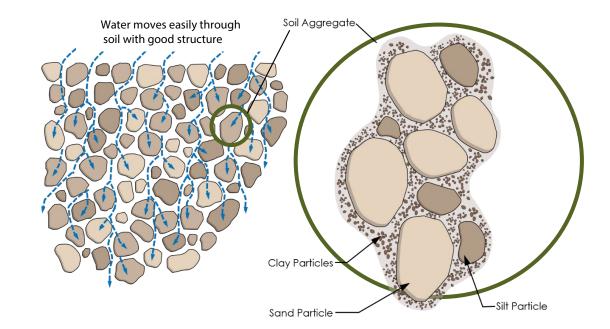

STEP THREE

EVALUATE YOUR SITE


• Mineral

• Organic

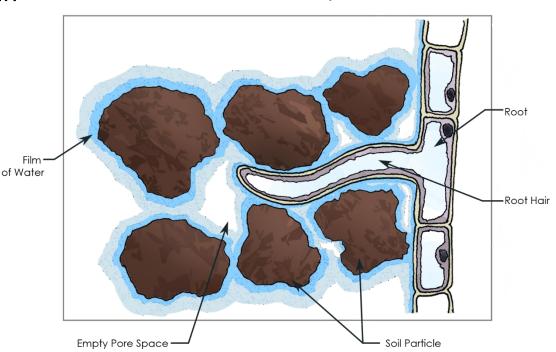
• Pore Space


STEP THREE

STEP THREE **EVALUATE YOUR SITE**

Soil Aggregation

- Created by bacteria, fungi and humic acid from organic matter
- Allows water
 - infiltration & percolation
 - storage


STEP THREE **EVALUATE YOUR SITE**

Soil Aggregation

Creates soil pores which contain

OWL: <u>O</u>xygen <u>W</u>ater <u>L</u>ife

- Purifies runoff water
- Creates water holding capacity

Water enter the root hairs by OSMOSIS.

Water Uptake by Plant Roots

Soil Compaction

Organic Matter

STEP THREE

- Reverses compaction
- Improves root penetration
- Improves plant success

Remediating Compaction

- Add organic matter
- Build the health of the soil food web
- By the way ... ADD ORGANIC MATTER!
 - IN the ground: compost for soil amendment when planting
 - ON the ground: mulch after planting

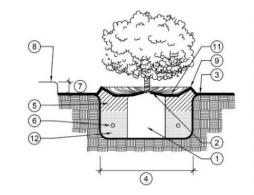
Compost Soil Amendment

Mulch on ground

Soil Amendment

- Use compost when planting
- Mix compost with backfill soil
 - 30% most plants
 - 15% natives in disturbed soil
- Available in bags or bulk

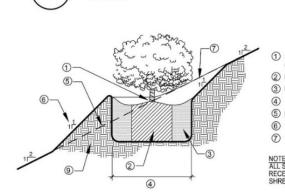
Compost for soil amendment


EVALUATE YOUR SITE

Soil Amendment

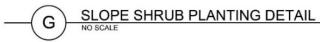
Planting

STEP THREE


- Dig hole 2 x wide
- Fill hole with water before planting
- Loosen or slice roots
- Plant crown above soil level

NO SCALE

- 1 ROOTBALL.
- 2 CROWN-1" ABOVE FINISH GRADE.
- 3 FINISH GRADE.
- 4 2 X ROOTBALL DIA.
- 5 BACKFILL MIX (SEE SPECS.).
- 6 PLANT TABLETS (SEE SPECS.).
- 7 2" MAX. DEPTH.
- 8 TOP OF PAVING.
- 9 4" HIGH WATERING BASIN.
- 10 UNDISTURBED NATIVE SOIL.
- 1 PROVIDE 2" MULCH LAYER. IN ALL SHRUB AREAS.
- 12 NATIVE SOIL BACKFILL


Use amended soil mixture to backfill planting hole

SHRUB PLANTING DETAIL

- SET CROWN OF ROOTBALL. EQUAL TO ORIGINAL GRADE.
- 2 ROOT BALL.
- ③ PLANT SHRUBS PER DETAIL C2, SHEET L-423.
- PLANT PIT 2X ROOTBALL WIDTH.
- 5 LINE OF ORIGINAL 2:1 SLOPE.
- 6 1:1 DOWNHILL FILL
- 1:1 UPHILL CUT
- NOTE: ALL SHRUB BEDS LESS THAN 3:1 SLOPE SHALL RECEIVE A 3" LAYER PREMIUM MEDIUM GRIND SHREDDED REDWOOD BARK MULCH.

Mulch

- Blanket over soil surface
- Continues to feed the soil as it breaks down
- Adds organic matter in areas already planted
- Prevents
 - ✓ Erosion
 - \checkmark Evaporation
 - ✓ Weeds
 - \checkmark Compaction

Mulch Application

- After planting, lay 4" layer on top of soil
- Leave open space around plant stem or crown
- Add additional mulch when areas are thin
- Rule of thumb: 1¹/₄ CY covers about 100 sq ft at 4" depth

Brush Mulch

Chipped Mulch

Mulch Types

Wood Chip Mulch

Colored Wood Chip Mulch

Bark Nuggets

Okay for pathways, but not for beds or slopes

NOT good for soil health or slopes

Mulch Types

✓ Soil Building: chipped tree trimmings or coarse compost

- Texture varied particle sized
- Water passes through
- Holds in place on slopes and in wind

Brush or Chipped Mulch

Chipped Mulch

Blended Mulch

Soil Building

Products at Miramar Greenery

Material Type	Description	Price/Cubic Yard (incl. tax & loading)
City Resident Self-Loading Composted 4" Mulch	Up to 2 cubic yard	FREE
1/2" Compost	10 week processing of yard waste and food waste, screened to 1/2"	\$12
4" Mulch	2 week processing of yard waste only	\$ 5
2" Mulch - Preferred Mulch	2 week processing of brush and branches (no curbside material)	\$12
Coarse Chips (2" Compost Overs) (some plastic contamination)	10 week processing of yard waste & food waste, screen to 1/2" - 2"	\$ 5
-Natural Wood Chips Fine for Paths	Logs ground to 2" – 4" and screened to remove fines	\$24
-Natural 1/2" Fines	Logs ground and screened to 1/2"	\$24
-Plain Wood Chips Fine for Paths	-Dimensional lumber ground to 2"-4"	\$24
- Colored Wood Chips: - red & brown	Dimensional lumber ground to 2" - 4" and colored with non-toxic dye	\$3 4

How does your soil handle water?

- Organic matter remediates compaction
- Percolation and infiltration effected by
 - ✓ Soil texture
 - Soil aggregation
 - ✓ Layers of compaction or rock

Soil Drainage and Percolation Test

(Homeowner's Guide)

<u>Day 1</u>

STEP THREE

- 1. Dig one cubic foot hole (12"x12"x12")
- 2. Fill the hole with water to saturate the soil
- 3. Let drain overnight

<u>Day 2</u>

- 1. Lay a stick over the hole
- 2. Refill the hole with water to the level of the stick
- 3. Wait one hour
- 4. Measure how far the water level has dropped to determine the infiltration rate per hour

water smart SAN DIEGO COUNTY WATER AUTHORITY *Tip: Use the soil from the hole to do a worm count & test the texture of your soil*

Drainage Test

Homework:

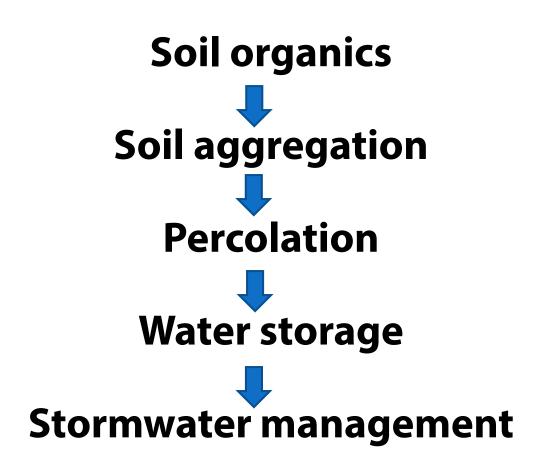
Soil testing

Here's a simple way to evaluate your soil drainage.

Dig a hole 12 inches wide x 12 inches deep, putting the soil to the side to be used for the Squeeze Test and the Worm Test.

Fill the hole with water and let it drain overnight.

Use a stick to span the hole from the top of the stick to the bottom of the pit. Measure the distance again in one hour.



Soil Drainage and Percolation Test

Sustainable Soil

What is a Watershed?

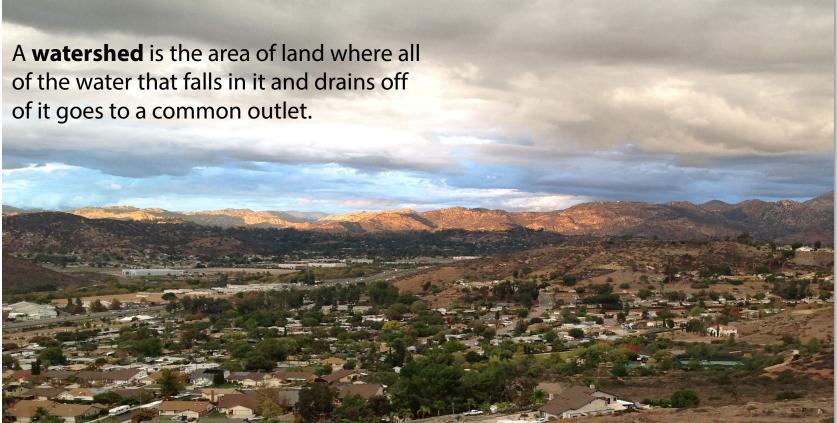
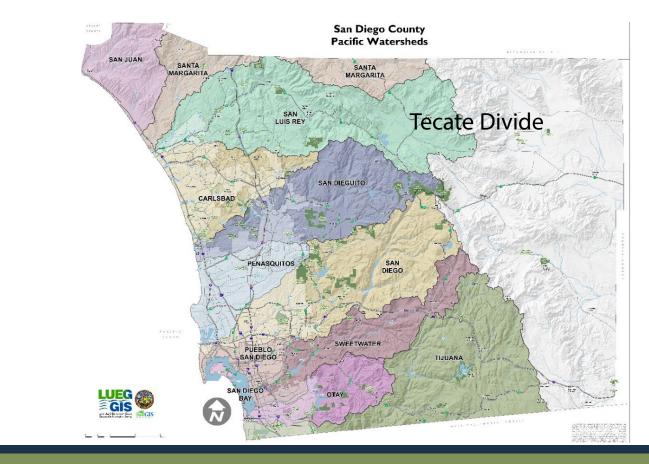
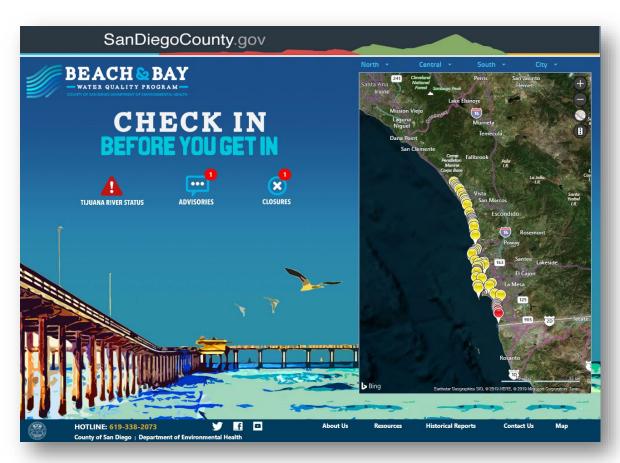



Photo: http://sandiegohomesforsale.com/communities/lakeside

You Live in a Watershed

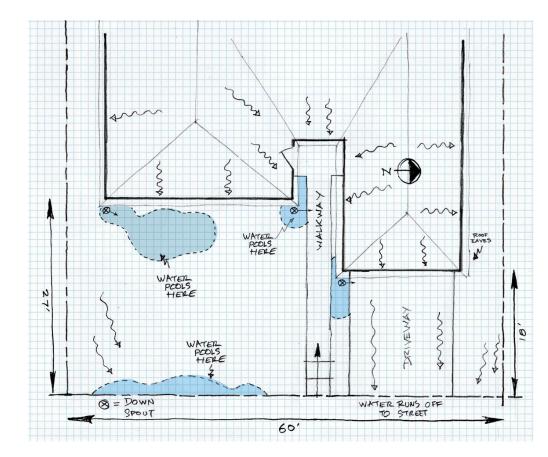
- San Diego has 11 westward draining watersheds
- Find your watershed at **ProjectCleanWater.org**



You Live in a Watershed

The benefits of using a watershed approach to landscaping:

- ✓ Improves our environment
- ✓ Protects our waters
- ✓ Preserves our coast
- ✓ Reduces beach closures from pollution
- ✓ Saves water in landscape
- ✓ Saves energy used in water transport
- ✓ Preserves groundwater



Your Yard is a Mini-Watershed!

Map your drainage

- Where does it flow from?
- Where does it flow to?

Gutter 🔿 Storm Drains 🔿 Ocean

STEP THREE

EVALUATE YOUR SITE

The First Flush

Old Town San Diego

Can the polluted water be cleaned? YES! Healthy soil breaks down pollutants.

Can the water be utilized?

YES! It can be stored in your soil, rain barrels and cisterns.

First Seasonal Flush

Subsequent Storm Event

STEP THREE

EVALUATE YOUR SITE

How can water capture work for you?

LID= Low Impact Development = Retain Stormwater

- Use rainwater instead of irrigation water
- Store the water in your soil

How can water capture work for you?

Question #1:

How much water do I plan for?

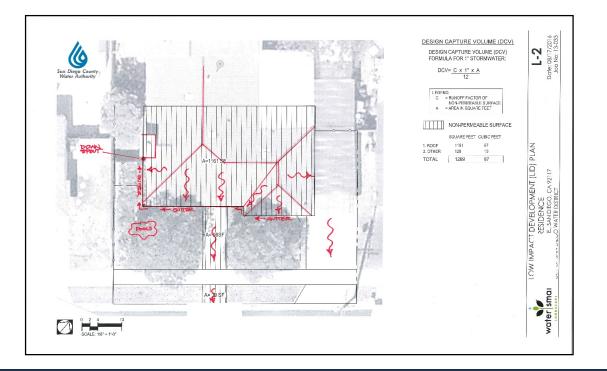
Answer:

- Site Observations (class 1)
- Determine your collection area and landscape feature (class 2)

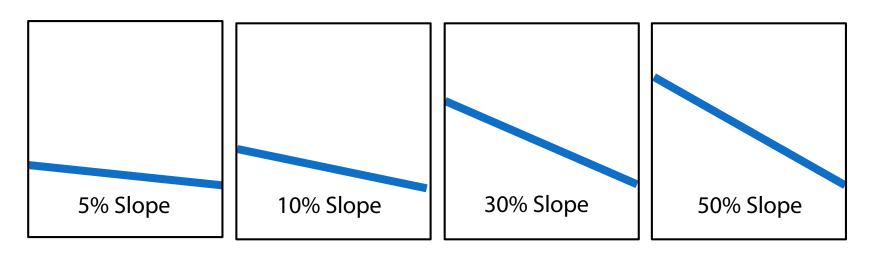
Question #1: How much water do I plan for?

- Evaluate your mini-watershed
- Explore your yard with new eyes

Question #1: How much water do I plan for?


• Use Google Earth to see your roof lines

How do I plan for runoff water?

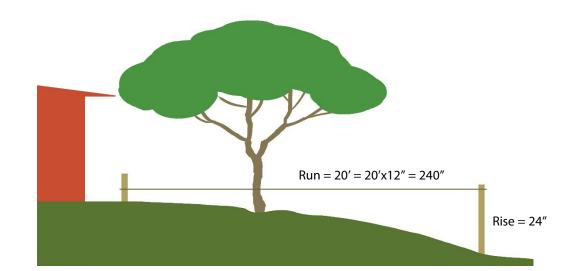

- Make notes on your LID Base Plan (L-2)
- Show water flow direction, gutters, downspouts, puddles, ridgelines & slopes

Evaluate your site

Estimating Slopes & Hillsides

- Estimate your slope on your L-2 plan for your site evaluation
- Use soil-building mulch type (brush mulch, chipped mulch with specified texture) on all slopes
- Decomposed granite (DG) used only on slopes less than 5%

EVALUATE YOUR SITE


Evaluate your site

Estimating Slopes & Hillsides

How steep is your slope?

Run = Horizontal distance Rise = Vertical distance Slope = (Rise /Run)* 100

Example:

STEP THREE

Rise = 24''Run = 20' = 20'x12'' = 240''Slope = (24''/240'')*100 = 10%

Utilities

Locate and plan to avoid conflicts

Locate the water meter and utility boxes

Locate overhead utility lines

Architectural Style and Materials

Can provide inspiration for your re-envisioned landscape

Architectural styles, colors and materials are repeated in these designs

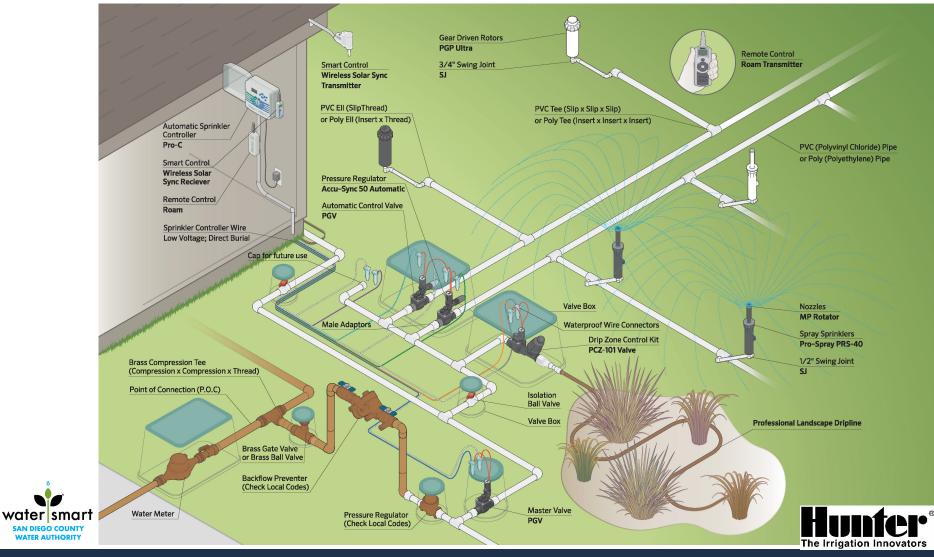
Views – Enhance or Screen

Explore your yard with new eyes

Views to distant features, like these mountains, can be emphasized

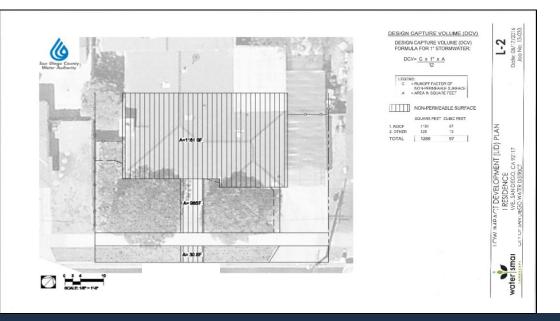
Undesirable views can be screened

Existing Trees


Well placed mature trees:

- Add value to the property
- Provide climate adjustments to your property and the region

Anatomy of an Irrigation System



Site Observations

Homework: Site observations

LID= Low Impact Development = Stormwater Infiltration

- Where does it flow from?
- Where does it flow to?
- Gutter > Storm Drains > Ocean
- Record observations on your LID L-2 plan

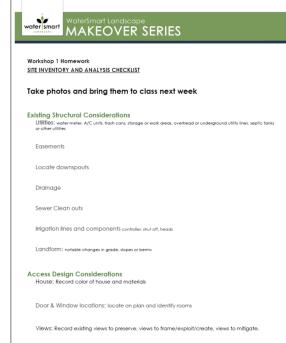
Site Observations

- Starting point of a successful design
- Take photos
- Assess existing situation
 - 1. Drainage conditions
 - 2. Structural conditions
 - 3. Design considerations
 - House style
 - Views and screening
 - Existing trees & plants
 - Functional
 - Use patterns
 - Prevailing wind
 - Necessary shade

water	WaterSmart La	indscape VER SER	IES	Homework: Site observations
	Homework DRY AND ANALYSIS C		oxtwook	
	•		ext week	
	uctural Considera ater meter, A/C units, trash ies		eas, overhead or u	nderground utility lines, septic tanks
Easemen	ts			
Locate de	ownspouts			
Drainage				
Sewer Cle	ean outs			
Irrigation	lines and componer	NTS controller, shut off, he	eads	
Landform	: notable changes in grad	de, slopes or berms		
	sign Consideration acord color of house of			
Door & W	indow locations: loc	ate on plan and ide	entify rooms	
Views: Record existing views to preserve, views to frame/exploit/create, views to mitigate.				

Site Observations

- Starting point of a successful design
- Take photos
- Assess existing situation
 - 1. Stormwater conditions
 - 2. Structural conditions
 - 3. Design considerations
 - 4. HOA requirements


Site Observations

- Starting point of a successful design
- Take photos
- Assess existing situation
 - 1. Stormwater Conditions
 - 2. Structural Conditions
 - 3. Design Considerations
 - 4. HOA requirements

5. Growing Conditions

- Soil type
- Exposure: sun/shade/wind
- Wet/dry patterns

Homework for Class 2

Read

□ A Homeowner's Guide to a WaterSmart Landscape Steps 1-4

Conduct

□ A soil drainage test

- An LID analysis based on your L-2 base plan
- A site analysis and complete the questionnaire

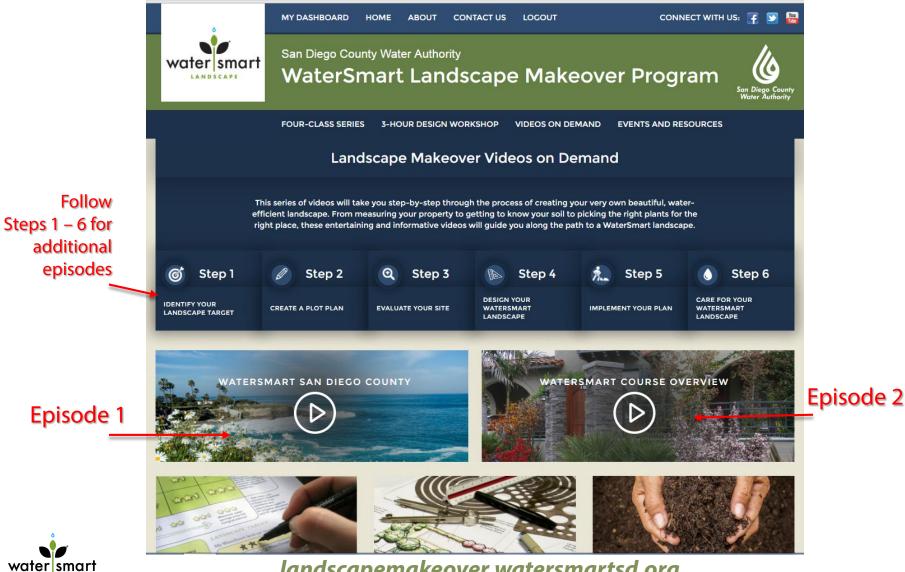
Identify

□ Your star rating 🟠 🏠

Apply for

Turf replacement rebates at SoCalWaterSmart.com

Watch


□ Videos On Demand episodes 1 through 8 at landscapemakeover.watersmartsd.org

For more technical information, refer to the **Sustainable Landscape Guidelines** online at *landscapemakeover.watersmartsd.org/resources*

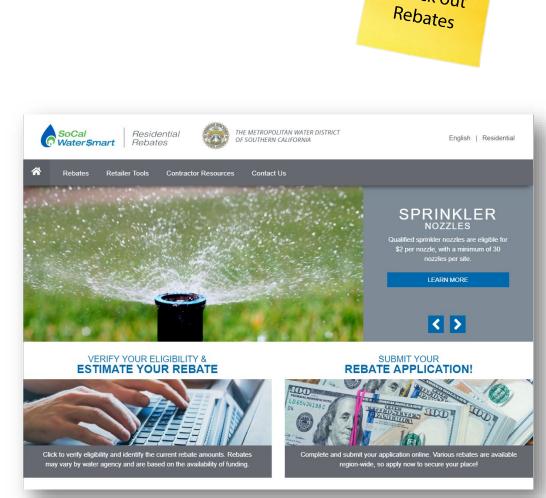
Homework sheets are located at the end of the Class 1 section in your notebook

Landscape Makeover Videos On Demand

landscapemakeover.watersmartsd.org

SAN DIEGO COUNTY WATER AUTHORITY

Landscape Rebates & Incentives


SoCalWaterSmart.com

Turf removal

SAN DIEGO COUNTY WATER AUTHORITY

- Rotating sprinkler nozzles
- Weather-based irrigation controllers
- Rain barrels & cisterns
- Soil moisture sensor systems

Homework: Check out

WaterSmart Landscape MAKEOVER SERIES

Class 2 – Shaping Spaces Learning Objectives Landscape Design Functional Planting Shape Your Space Design Factors Plant Selection

Putting It All Together

WaterSmart Landscape MAKEOVER SERIES

QUESTIONS?